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Pressure Dependence of Fluorescence Spectra. IV. Effects of Vibrational Energy 
Transfer between Fluorescing Molecules* 
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(Received April 12, 1962) 

Vibrational relaxation of a system of s-dimensional degenerate harmonic oscillators is investigated. The 
oscillators are impulsively excited and are then allowed to relax to thermal equilibrium by collisions with a 
heat bath and by transfer of vibrational quanta among themselves. The model is applicable to analysis of 
experimental data in which excited molecules arc produced in concentrations not negligible in comparison 
to the concentration of heat-bath molecules. 

INTRODUCTION 

MOST of the work which has been done to date on 
vibrational energy transfer of molecules in the 

gas phase has been concerned with oscillators present 

in trace amounts and transferring energy only by colli-

• This work was supported by a grant from the National 
Science Foundation. 
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sions with heat-bath molecules. l Two notal,ic L':-"l'plion~ 
are recent papers by Shuler and by OsijJo\'," in which 
it is shown that the equations describing till' n'laxa t ion 
of a system of one-dimensional harmonic u", ilia tors in 
collisional contact with each other and with nothing 
else may be exactly linearized; this linearization results 
in equations formally identical to equations solved 
earlier by Montroll, Rubin, Shuler, and their co­
workers. Shuler's method, as we shall sec shortly, 
works equally well in reducing the corresponding 
equations for s-dimensional degenerate harmonic oscil­
lators ([sJ oscillators) to linear equations identical in 
form to a set we treated earlier. 1k These relaxation 
equations, however, ignore interactions with the heat­
bath and consider only the collisional permu tation of 
vibrational quanta among the oscillators. They arc 
therefore suitable only for the analysis of systems ill 
which intermolecular vibrational energy transfer is 
quite eOicient compared to transfer of energy from the 
vibrational degrees of freedom to the heat bath, and 
then only for times short compared 10 the natural time 
scale involved in the lat ter process. 

A /lumber of experimental papers have appeared the 
last few years in which relatively large concentrations 
of vibraLionally excited species have been prepared by 
impUlsive means, such as /lash phololysis.3 In these 
systems it appears questionable whether the neglect of 
collisional permutation of vibrational energy among 
the molecules of interest is warranted; this wns noted 
by Norrish and his co-workers.3 

We therefore investigate the relaxation of a syst t ill of 
[s J oscillators exchanging energy with earh ot hcr and 
with a heat bath. The remainder of this p ;IJltf present s 
the model studied, the relaxation equa t ions pertaining 
to the model, and the results of numerical integration 
of these equations. 

We are indebted to Dr. Patricia Eberlein for the 
Heun-Euler subroutine we used in the compulalion, 
and to Suresh Thakore for his most helpful assistance 
in debugging. The computations were donc on the 
IBM 7070 of the University of Rochester Computing 
Center. 

MODEL 

The following mechanism is appropriate for colli­
sional transfer of vibrational energy in the dilute gas 

I Recent references are: (a) T. Carrington, J. Chem. Phys. 35, 
807 (1961); (b) T. Carrington, Discussion Faraday Soc. 1962 
No. 33; (c) K. E. Shuler, G. H. Weiss, ami K. Andersen,]. Math. 
Phys. (to be published); (d) E. W. Schlag, J. Chem. Phys. 35, 
2117 (1961); (e) B. S. Neporent and S. O. Mirumyants Optics 
and Spectroscopy 8, 336 (1960); (C) E. E. Nikilin, DOkladY 
Akad. Nauk S.S.S.R. 135, 1442 (1960); (~) D. J. Wilson, B. 
Noble, and ~. Lee, J. Chern. Phys. 34,1392 (1961); (h) N. Chow 
and D. J. W!lson, J. Phys. Chern. 66,342 (1962); (i) J. Brauner 
and D. J. Wlls~)Jl,]. Chern. Phys. 36,2547, (1962). References to 
numerous earher papers are given in (j) E. W. Monlroll and 
K.. E. Shuler, Advances in Chem. Phys. I, 361 (1958); (k) D. J. 
WlIson, J. Chern. Phys. 36, 1293 (1962). 

~ (a) K. E. Shuler, J. Chem. Phys. 32, 1692 (1%0); (Ii) A. T. 
O~pov, Doklady Akad. Nauk S.S.S.R. 130, 523 (1960). ' 

See, for example, N. Basco, A. B. Callear, and R G. W. 
Norrish, Proc. Roy. Soc. (London) A260,459 (1961). 

phase, wherc binary collisions only need be considered: 

A,+M-tAj+M aj, 

ex(i,j; k, l). (1) 

lIere JI I' n.: prescnts a molecule in its pth quantum state, 
p symbolizes the set of quantum numbers necessary 
to de;ui\)e the state, and aj , and ex(i,j; k, l) are rate 
constants for the processes with which they are associ­
ated. The lirst process, interaction with the heat-bath 
molecules M (assumed at thermal equilibrium), has 
been analyzed in detail previously.l The sccond process 
was analyzed by Shuler and Osipov2 for the case of [1J 
oscillators. Note thal in the second process energy must 
be conserved. The ex(i,j; k, l) arc related by the prin­
ciple of microscopic reversibility ; however, the re­
quirement of conservation of energy implies that no 
temperature dependence is introdu ced by the require­
ment of microscopic reversibility. 

One could thcn readily write out the relaxation equa­
tions pertaining to this set of processes; we shall not 
clo so, however, until the model has heen further 
specialir.cd. We restricl ourselves 1.0 :t representation of 
the molecules of inlercst as [sJ oscillators, as ha s been 
done by 'Kassel 4 and others. The t ransi tion rate factors 
aj' arc then just those used by us earlicr1k ,6; they arc 

a'+1.i= ac-O
( i+s), 

a'.'+1 = a(i+ 1), 

ai.j=O,j~i±1. (2) 

O=!t,,/ kT, where II is the frequency of the oscillators. A 
si mple generalization of the joint transition prob­
abilities used by Shuler2n yields the ex(i, jj k, l) j they 
are 

ex(i+l,jj i,j+1) =ex(i+1) (j+s) , 

ex(i-l,j; i,j-I) =ex(i+s-l)j, (3) 
etc. ; 

ex(i,j; k, l) =0, 

if k~i± 1, l~j=F 1. a and a are constants. 
On inserting these expressions into the relaxation 

equations we obtain 

dA;/d/ = a(i+s-1)e- sM Ai_1+a(i+ 1)M A ,+1 

-a[ (i+ s)e- s+iJM A,+ Lex(i+1) U+s-1) A ,+1 A j-J 
j-l 

+ Lex(i+s-1) (j+l) Ai-JAj+1 
j-O 

- Lexi· (1+s-1) Aj_JA.- La(i+s) <1+1) Aj+1Ai. 
j-l i-O 

(4) 

A, and M here represent the concentrations of the corre­
sponding species. 

4 L. S. Kassel, Kinetics of Homogeneolls Gas Reaclions (Chemi­
cal Catalog Company, New York, 1932). 

~ f, ? Buff and D. J. Wilson, J. Chern. Phys. 32,677 (1960). 
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If we n(lW calculate the rate of change of the meall 
energy of the oscillators [by mUltiplying the ith equa­
tion in (4) by i and summing], we find that the terms 
involving transfer of vibrational energy from one 
oscillator to another contribute nothing, and we ob­
tain a simple linear differential equation for the relaxa­
tion of the mean energy; 

(5) 

where T=aMt and (E)= L I_oiA,. The solution to this 
equation is 

(E)=[se-O/(l-e-9)][ 1- exp[ - (l-r)r]1 

+ (EO) exp[ - (l-e- O) T l ((I) 

where (EO) is the initial mean energy. This re~ult i~ a 
simple extension of MontroJl and Shuler's6 Eq. (l . lX), 
and is a special case of a problem discussed in reference 
1 (c). 

We may readily investigate the case in which inter­
action with the heat-bath molecules M can be ignored, 
so that (E)(t) = (EO), Noting that Lj-ojJl j= (E) and 
that Li-OA i= 1 (assuming unit total concen t ration 
of A), we obtain from Eq. (4) the following result: 

dA;jdt=a ( (EO)+S){ (i+1)A i+I +(i+s-l) 

(EO) [.. (EO)]} X -( -) -A i _ l - t+(t+s)-( -) - Ai . 
EO +s EO +s 

(7) 

This is identical in form to the equation obtained'k 
describing the relaxation of [sJ oscillators in cont.act 
with a heat bath at a temperature defined by e-8= 
(EO)/( (EO)+S). The equations can be solved in exactly 
the same way as was used in reference 1 (k), a method 
used earlier by Montroll and Shuler.6 

One may then take expression (6) for (E), substitute 
it fol' (EO) in EC!. (7), and then substitute the righl­
hand side of this result in Eqs. (4) in place of lhe four 
summations. This converts (4) inlO a system of firsl­
order, homogeneous, linear dilIerential equations. Un­
fortunately, the coefficients depend on the time in a 
moderately complex way, so that this linearization of 
the nonlinear problem does not lead to simpler machine 
computation than would result from using Eqs. (4) 
as IS. 

Equations (4) were therefore programmed for nu­
merical integration by the Heun-Euler method,1 and 
the various examples were computed. As chccks on 
rounding 01I and truncation errors we computed 
L ;.t1 I, which should be unity, and I:,-iA i, which was 
then compared with the value of the energy computed 
by Eq. (6). These results enabled us to determine how 

8 E. W. Monlroll and K. E. Shuler, J. Chem. Phys. 26, 454 
(1957). 

7 See, for example, H. Margenau and G. M. Murphy, The 
Mathematics oj Physics a,ui. Chemistry (D. Van Noslrand Com­
pany, Inc., Princeton, New Jersey, 1956), 2nd cd., Sec. 13.17. 

small we needed to make the time intervals fj,t in the 
numerical inlegration, and how many levels we needed 
to include to avoid having molecules "piling up" at the 
top level during the relaxation; inspection of the A, 
also was used to a void this last source of error. 

One other point must be made before discussing our 
results. One can readily verify that substitution of 

g.(i) = (i+s-1) !j(s-l) Ii!, 

for Ai (with similar expressions for Ail etc.) causes the 
four summations in Eqs. (4) to cancel out identically, 
no maller what value of e is used. Therefore, after the 
disl riiJlItion /1 i has once become of Boltzmann type, 
the system will continue to relax to equilibrium through 
:t series of Bolt7.ll1:tnn distributions in exactly the same 
way as does it similar system in which the only mode 
of encrgy t ransfc r is to and from the heat bath. This 
lalter problem has been studied in detail.'k ,a It was 
t hen'fo re necessary for us to carry out our integrations 
only until a Boltzmann distribution' (at it tempera­
ture generall y quite dilIerent from that of the heat 
bath ) was reached; the remainder of lhe relaxation 
could y ield nothing not 'already understood. 

The calculation above of the mean energy of the 
system showed that the transfer of quanta among the 
molecules of interest had no effect on the relaxation of 
the mean energy. As one would expect, however, the 
mean-square energy (E2)= L.-i2A, does depend on the 
efficiency of this mode of energy transfer. If one mul­
liplies Eqs. (4) by i2, sums, uses the definitions of (E) 
and (E2), and inserts the expression (6) for (E), one 

.4 

.1 

.02 Initial ucltotlon to 4th IQul, 

c/o 1.0, e-9 • 0.8, $.' 

.04 

15 

fIG. 1. Plols of A./2':.A. vs n. The dimensionless time (aMt) 
elapsed since initial excitalion is indicated by each plot. 
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obtains the following diITerential equation ror (t2 ): 

(cl(f2)/clt) +2(o+as) (E2)=2-y2a(s+1) exp ( -28/) 

+ [4,8-ya(s+ 1) +2as+-yaM(2sp+l+p)] exp ( -0/) 

+[2,82a(s+1) +,6aM(2sp+l+p) +2,6as+sapM], (8) 

where 
0= (l-p)aM, 

,8=sp/(l-p), 

-Y=Eo-sp/(1-p), 

p=c-9• 

Solution of (8) yields, after simplilimtion, the 
following expression for (E2): 

+(Eoo)C~e_8+(E)oo), (9) 

(EO)= (E)(O), 

(Eoo)= (E)( 00), 

(E02)= (E2)(O). 

The argument of the first exponential depends on th e 
eniciency of energy transfer among the molecules of 
interest. 

lloudart and Dubois proposed8 that the nonequililJ­
rium distributions arising in photochemical reactions, 
etc., be characterized by their vibrational temperature, 
which is, aside from a scale factor, our (E), Surely it 
would be helpful if one could simply expn.:ss the in­
formation about such distributions which is most 
pertinent to their chemical behavior. Boudart a nd 
Dubois' T vib, or our (E), is certainly one of the basic 
parameters needed. However, one can construct reason­
able model distributions of [s] oscillators having the 
same (E) and drastically diITerent rates of decomposi­
tion. (We assumed a Kassel-type formula for the 
microscopic decomposi~ion rates of activa ted mole­
cules.4) Evidently, a more detailed description is 
needed than is supplied by the single parameter pro­
posed. A logical second parameter to include in a simple 
description is the mean-square energy, or some quan­
tity readily derived from it. (E2) can often be fairly 
easily obtained on analysis of theoretical models,1(o) ,9 

and one should be able to obtain this quantity even 
B M. Boudart and J. T. Dubois, J. Chern. Phys. 23, 223 (1955). 
• P. M. Mathews, I. 1. Shapiro, and D. L. Falkoff, Phys. Rev. 

120, 1 (1960). 

Inltlol aloltotlon to 4th level, 
0110 1.0, e-e.0.6, •• a 

.02 

6 10 us 

FlO. 2. Plots of An/2:(A I vs II. Figures 1,2, and 3 show the elTects 
of increasing molecular complexity 

for the rather general model considered by Gans.1O We 
are indebted to Dr. Dubois for discussing with one of 
us lhe problem of simply characterizing nonequilibrium 
distributions, and to our referee for some useful sug­
gestions on this point. 

For our model, the mean-square deviation of the 
(dimensionless) energy is given by 

(E2) - (E )2= exp( -201) I [(E02) - (EO )2_ ( (EO)2/S) 

- (EO)] exp( -2ast)+(1/s) «EO)- (Eoo»)2j 

+ ( (EO)- (Ea») [( 1 +6-S) / (l-c-O) ] cxp( - ot) 

+[(E",)/(l-p)]. (10) 

If one excites to an initial Boltzmann distribution, the 
coelflcient of exp( -2ast) vanishes, as one would expect. 
If one excites to an initial delta-function distribution 
(E02)= (EO)2, then the absolute value of the ratio of 
the coefficient of exp( -2ast) to the constant term in 
the square brackets is greater than 1 +s/ (EO)' Since 
these coefficients are of the order of (EO)2 and the other 
terms in (10) are of the order of (EO), one would use 
a large value of (EO) in order to obtain an estimate 
of a. For the initial distribution function Pm= 
HOmo+omn), this ratio is [1-(1/s)-(2/(EO»)}S. 

From the above two examples, we can see that there 
exist initial distributions for which the behavior of the 
mean-square deviation of the energy may be rather 
strongly influenced by the vibration-vibration transfer 
mechanism. 

10 P. J. Gans, J. Chern. Phys. 33, 691 (1960). 
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Initial .. cllallon 10 41h level, 

01 0 1.0, e-8. 0.6, , • 5 

.02 

6 10 

FlO. 3. Plots of A./2':iAi vs n. 

16 

One can conceive of various experiments by which 
the presence of such a mechanism could be detected. 
One of them is obviously flash excitation and high­
speed spectroscopy, as used, for ex~mple, by Norrish. 
Another is flash photolysis of the following type. Let 
ti S asstlme that a reactant has a (dimensionless) 

1.00 

.20 

.15 

.06 

6 

.002 
Inilial nollollon 10 

81h IIYlI, 0('0.1, 

e-e. 5.laI0-4, ,.1 

10 16 

fIG. 4. The value of e-l used here and in fig. 5 corresponds to 
that for oxygen at room temperature. As t-> co only the zeroth 
level is populated. Note the change in vertical scale between 
Figs. 1,2, and 3 and Figs. 4, 5, and 6. 

.2 0 

.16 

.10 

6 

Inillol 81ollollon 10 81h level, 
0(010, e-e.6.laI0-~ 
9.1 

10 16 

FIG. S. The curve for which a,Mt=O.025 shows "piling up" 
at its right-hand end. This is also seen in some of the curves in 
Fig 6. 

critical energy ~*. If we flash excite a trace of reactant 
to energy levels a short distance below ~*, energy ex­
change with the heat bath (assumed at room tempera­
ture) only will occur, and, as shown previously, this 
will result in only a negligible number of molecules 
being collisionally excited to energies ~~*, so that the 
primary quantum yield would be low. In this case, 

.20 

Iniliol .. tilallon 10 10lh leul, 
",. 1.0, e- O'0.6, .s. I 

5 10 

FIG. 6. Plots computed fOi a model identical to that ~hown in 
Fig. 5, except that the heat-bath temperature is much higher. 
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whcn (E)(t) is largc, (E2)- (E)2 is sm:dL If, on lhe other 
hand, we flash excite a rather high colH'{'ntration of 
reactant molecules Lo ener~y levels a short distance 
below E*, an eflicient vibrat ion -vi iJr:1 t ion transfer 
mechanism would permit r:tpid "spreacling" of Ihe dis­
tribution before heat-bath interactions 11;1(1 cooled iL 
down. In this case, the viiJra.t ion -vii 11';1/ ion Lransfer 
mechanism permits the distrihul ion t () si l11ul t a neollsly 
have large values of (E)(t) and «(~ ) - (/ r Sin'e we 
may now have many molecules ha\'ing viiJ raLional 
energy ;?:E*, we would expect, for Ihi s ( '; I S(" to rind 
CJuiLe appreciable primary quantum yil·lds. hlrLher, it 
is readily seen Lhat these quanlum yielcls will increase 
with increasing flash intensity, in contrast to the pre­
vious case. 

The behavior with time of the quantiLy «E2)­
(E)2)/(E)2 is of some interest. From Eqs. (6) and (10) 
we could write a. rather complicated expression for I his 
quantity; instead we choose to write down the limiLing 
expression for at» 1 

lim «Ea)-(E)2)/(E)2 
al»1 

= (l/sc-{1) 11-[( (EO) - (EO») / (E",) J( l -c- 0) exp( - 5t) I. 
( 11) 

It is interesLing to note that the side frolll which 
equilibrium is finally approached is independent of 
everything except (EO) - (Eo»' 

RESULTS 

Some of our numerical resulLs ;u:e . illuSLrated in 
figs. 1- 6, in which distribution functions arc ploUed 
as functions of vibrational quantum number at various 
times after initial impulsive excitation of the molecules 
to one vibrational level. It must be noted here that, in 
marked contrast to the linear problems treated previ­
ously" one cannot obtain the solution to the problem 
with an arbitrary initial distribution by choosing suit­
able linear combinations of solutions to problems 
having initial delta-function distributions. 

figures 1-3 show the eaect of increasing molecular 
complexity while holding e-B and a/aM constant, and 
initially exciting impulsively in all cases to the level 
containing four quanta. for s= 1, (E)(t) decreases 
with time; for s=3, it changes relatively lillie; for 
s=5, it increases quite markedly with time. riots of 
distribution functions in which (EO) is sub!'tantially 
larger than skT show somewhat less dependence on s 
during the initial relaxation, and the rate of the initial 
relaxation is considerably more rapid, due to the fact 

Ih ;l t ;111 of the coelTlcients in the relaxation eCJ uations 
illl n '; lse wilh increasing quantum numher. 

l,'igllrl's ,I and 5 show the elTeds of varying the 
l'ilici elll"y of the transfer of vibration"l energy from onc 
molccule of interest to another. EX]ll'l'illlentally, this 
could be clone by simply increasing Ihe concentration 
of "interesti ng molecules," since this mode of energy 
transfer involves quadratic terms in the A/s, while the 
heat-bath interactions lead to only linear terms in the 
A /s. In Fig. 4, a is 0.1; in Fig. S, it is 10 -aside from 
this, the Lwo models :Ire identical. fI. is evident that an 
eilicil'nt vihral ion- viiJration transfer process pro­
foundly affecls the time evolution of the dislribution. 
This process, if enicient, muses a rapid decay to a 
flol t ZIll ;lnn d istriiJu tion, wh ich then relaxes to a nolLz­
m;lnn distribution at the temperature of the heat 
hath ill l'x:lclly the same way as docs a si milar syslem 
in which encr~y tmnsfcr from one molecule of interest 
to "not her docs not occur. 

Figure (j is included for comparison with Fig. 5 and 
Fig. 1. The heat-hath temperatures of the models 
analyzed in Figs. 5 and 6 arc quite different; neverthe­
less, the initial relaxations of the two distrihuLions arc 
very simil:tr. The values of a dirfer by a faelor of 10; 
the over-all result of this is to change the time scale o( 
the initial relaxation. Figurc 6 and Fig. 1 differ only in 
the level to which initial excitation occurs; the initial 
distribution having the higher energy "spreads out" 
substantially more rapidly than docs the other one, as 
remarked ;thove. 

The right-hand ends of the curves shown in Fig. 6 
indicate truncation error, due to the inclusion of only 
1 C) energy levels in the model. Onc of the curves in 
Fig . 5 shows the same effect. Such error was also indi­
cated by the fact that values of (E)(t) calculated by 
summing the defining series differed appreciably from 
values calculated from Eq. (6). Since the collision 
mechanism conserved molecules (no leakage of mole­
cules from the 19th state to those above was permitted), 
this type of error does not afIect the requirement that 
molecules be conserved. The error, appreciable though 
it is for the model depicted in Fig. 6, docs not, we feel, 
invalidate the conclusions mentioned above. 

The results of our calculations indicate that studies 
of vibrational relaxation in which vibrationally excited 
molecules of interest constitute an appreciable fraction 
of the species present should lead to considerable in­
formation about the nature of vibration-vibration 
transfer of energy between molecules, provided that 
the initial distributions of vibrational energy are not 
Boltzmann-like . 

• 
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