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Pressure Dependence of Fluorescence Spectra. IV. Effects of Vibrational Energy
Transfer between Fluorescing Molecules™
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(Received April 12, 1962)

Vibrational relaxation of a system of s-dimensional degenerate harmonic oscillators is investigated. The
oscillators are impulsively excited and are then allowed to relax to thermal equilibrium by collisions with a
heat bath and by transfer of vibrational quanta among themselves. The model is applicable to analysis of
experimental data in which excited molecules are produced in concentrations not negligible in comparison
to the concentration of heat-bath molecules.

INTRODUCTION in trace amounts and transferring energy only by colli-
OST of the work which has been done to date on )
vibrational energy transfer of molecules in the “This work was alipporiel by & ginst from The Natiosn)

gas phase has been concerned with oscillators present  Science Foundation.
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849 PRES.SURE DEPENDENCE OF FLUORESCENCE SPECTRA. 1V
sions with heat-bath molecules.! Two notable cxceptions  phase, where binary collisions only need be considered:

are recent papers by Shuler and by Osipov,” in which
it is shown that the equations describing tlic relaxation
of a system of one-dimensional harmonic oscillators in
collisional contact with cach other and with nothing
clse may be exactly linearized; this lincarization results
in equations formally identical to equations solved
carlier by Montroll, Rubin, Shuler, and their co-
workers. Shuler’s method, as we shall sce shortly,
works equally well in reducing the corresponding
cquations for s-dimensional degenerate harmonic oscil-
lators ([s] oscillators) to linear equations identical in
form to a set we treated earlier.’® These relaxation
equations, however, ignore interactions with the heat-
bath and consider only the collisional permutation of
vibrational quanta among the oscillators. They are
therefore suitable only for the analysis of systems in
which intermolecular vibrational energy transfer is
quite cflicient compared to transfer of energy from the
vibrational degrees of freedom to the heat bath, and
then only for times short compared to the natural time
scale involved in the latter process.

A number of experimental papers have appeared the
last few years in which relatively large concentrations
of vibrationally excited species have been prepared by
impulsive means, such as flash photolysis.® In these
systems it appears questionable whether the neglect of
collisional permutation of vibrational energy among
the molecules of interest is warranted; this was noted
by Norrish and his co-workers.?

We therefore investigate the relaxation of a system of
[s] oscillators exchanging energy with cach other and
with a heat bath. The remainder of this paper presents
the model studied, the relaxation equations pertaining
to the model, and the results of numerical integration
of these equations.

We are indebted to Dr. Patricia Eberlein for the
Heun-Euler subroutine we used in the computation,
and to Suresh Thakore for his most helpful assistance
in debugging. The computations were done on the
IBM 7070 of the University of Rochester Computing
Center.

MODEL

The following mechanism is appropriate for colli-
sional transfer of vibrational energy in the dilute gas

! Recent references are: (a) T. Carrington, J. Chem, Phys. 35,
807 (1961); (b) T. Carrington, Discussion I‘araday Soc. 1962
No. 33; (c) K. E. Shuler, G. H. Weiss, and K. Andersen, J. Math.
Phys. (to be published); (d) E. W. Schlag, J. Chem. Phys. 35,
2117 (1961); (e) B. S. Neporent and S. O. Mirumyants, Optics
and Spectroscopy 8, 336 (1960); (f) E. E. Nikitin, Doklady
Akad. Nauk S.S.S.R. 135, 1442 (1960); (g) D. J. Wilson, B.
Noble, and B. Lec, J. Chem. Phys. 34, 1392 (1961); (h) N. Chow
and D. J. Wilson, J. Phys. Chem. 66, 342 (1962); (i) J. Brauner
and D. J. Wilson, J. Chem. Phys. 36, 2547, (1962). References to
numerous earlier papers are given in (j) E. W. Montroll and
K. E. Shuler, Advances in Chem. Phys, 1, 361 (1958); (k) D. J.
Wilson, J. Chem. Phys. 36, 1293 (1962).

? (a) K. E. Shuler, J. Chem. Phys. 32, 1692 (1960): (b) A, 1.
Osipov, Doklady Akad. Nauk S.S.S.R. 130, 523 (1960).

3See, for example, N. Basco, A. B. Callear, and R. G. W.
Norrish, Proc. Roy. Soc. (London) A260, 459 (1961).

A ‘—*—M—?A,'{'—M aji
A ddit AL alyji k1), (1)

Here A, represents a molecule in its pth quantum state,
p symbolizes the set of quantum numbers necessary
to describe the state, and ay; and «(%, j; k, I) are rate
constants for the processes with which they are associ-
ated. The first process, interaction with the heat-bath
molecules M (assumed at thermal equilibrium), has
been analyzed in detail previously.! The second process
was analyzed by Shuler and Osipov? for the case of [1]
oscillators. Note that in the sccond process energy must
be conserved. The (4, j; k, 1) arc related by the prin-
ciple of microscopic reversibility; however, the re-
quirement of conscrvation of energy implies that no
temperature dependence is introduced by the require-
ment of microscopic reversibility.

One could then readily write out the relaxation equa-
tions pertaining to this set of processes; we shall not
do so, however, until the model has been further
specialized. We restrict ourscelves Lo a representation of
the molecules of interest as [57] oscillators, as has been
done by Kassel* and others. The transition rate factors
aj; are then just those used by us carlier'™®; they are

aipri=ac~(i+s),
a¢,.-+1=a(i+1),
a;;=0, j#i%1. (2)
0=hv/kT, where v is the frequency of the oscillators. A
simple generalization of the joint transition prob-
abilities used by Shuler® yields the a(3, 7; &, 1) ; they
are
a(i41,7; 1, j41) =a(i+1) (j+s),
ali=1,j3 i, j—1) =al(i-+s—1)j, (3)
ete:;
a(i’j; k, l) =0,

if k¥#i+1, IjF1. a and « are constants.
On inserting these expressions into the relaxation
equations we obtain

dA/dl=a(i+s—1)e*M A 1+a(i+1) M A
—a[ (i+s) e +iIM A+ D a(i+1) (j4+s—1) A d
=1
+ 2 a(i+s—1) (j+1) diad

=0
— D air (i4s—1) Ajdi— 2 a(i+s) (i+1) Ajnd.
=1 =0
(4)
A;and M here represent the concentrations of the corre-

sponding species.

4 L. S. Kassel, Kinetics of Homogeneous Gas Reactions (Chemi-
cal Catalog Company, New York, 1932).
5 F, P. Buff and D. J. Wilson, J. Chem. Phys. 32, 677 (1960).
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4 If we now calculate the rate of change of the mean  small we nceded to make the time intervals Al in the
energy of the oscillators [by multiplying the ith cqua- numerical integration, and how many levels we needed
tion in (4) by 7 and summing ], we find that the terms  to include to avoid having molecules “piling up”’ at the
involving transfer of vibrational energy from one top level during the relaxation; inspection of the A4;
oscillator to another contribute nothing, and we ob- also was used to avoid this last source of error. ;
tain a simple linear differential equation for the relaxa- One other point must be made before discussing our
tion of the mean energy; results. One can readily verify that substitution of
Aot == 4, ) (e ip@e®, (i) =(i+s—1) Y/ (s—1) ki, |
where r=aM!( and (e)= i4id,. The solution to this L ) [ B
equation is for A; (with similar expressions for 4;, etc.) causes the [
four summations in Eqs. (4) to cancel out identically, | B
(e)=[se*/(1—€*)]{1— exp[—(1—€?)7]} no matter what value of 0 is used. Therefore, after the i B
| + (e} exp[— (1—e%) 7], (6) distribution :‘l.- hasl once become of I%c?llz.mann type, 3
: the system will continue to relax to equilibrium through 3
; where (g ) is the initial mean energy. This result is @ a scries of Boltzmann distributions in exactly the same
‘ simple extension of Montroll and Shuler’s® K. (1.18),  way as does a similar system in which the only mode
and is a special case of a problem discussed in reference  of cnergy (ransfer is to and from the heat bath, This
1(c). latter problem has been studied in detail.'’®® It was
We may readily investigate the case in which inter-  therefore necessary for us to carry out our integrations
action with the heat-bath molecules M can be ignored, only until a Boltzmann distribution (at a tempera- ‘
so that_(e)(t) = (e). Noting that D ;ejA,;=(¢) and turc generally quite different from that of the heat B
that 2 j.04;=1 (assuming unit total concentration bath) was rcached; the remainder of the relaxation B
of 4), we obtain from Eq. (4) the following result: could yield nothing not already understood. |
- The calculation above of the mean energy of the 1 :
; dA.-/dl=a((eo)—i—s){(i—i-l)A.-+1+(i+s—1) system showed that the transfer of quanta among the
1 molecules of interest had no effect on the relaxation of j
S fes) (e) the mean energy. As one would expect, however, the ‘{ ;
3 W A.-_l—[i+(i+s) ]A ‘}, (7) mean-square encrgy (€)= ) %4; docs depend on the B
5 (eo)+s (eo)+s efficiency of this mode of energy transfer. If one mul-
This is identical in form to the equation obtained' tiplies Eqs. (4). by 4% sums, uscs the definitions of (e)
describing the relaxation of [s] oscillators in contact and (€), and inserts the expression (6) for (€), one
with a heat bath at a temperature defined by ¢ = :
i (e0)/((eo)+s). The cquutiqns can be solved in exactly S| talsiql sesttatioa fe A Jorel g
the same way as was used in reference 1(k), a method il e A
used carlicr by Montroll and Shuler.? - o 3
One may then take expression (6) for (e), substitute '
it for (&) in Eq. (7), and then substitute the right- i
hand side of this result in Eqs. (4) in place of the four |
summations. This converts (4) into a system of first-
order, homogeneous, linear differential equations. Un- )
fortunately, the coefficients depend on the time in a
moderately complex way, so that this linearization of ‘
the nonlinear problem does not lead to simpler machine ‘
computation than would result from using Iiqs. (4)
as is. i
Equations (4) were therefore programmed for nu- IE
merical integration by the Heun-Euler method,” and
the various examples were computed. As checks on %
rounding off and truncation errors, we computed g
DAy, which should be unity, and 2.1'A.-, which was |
then compared with the value of the energy computed 2
d by Eq. (6). These results enabled us to determine how &
‘, 1«9 51:7 W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 ;
i ‘ ("Se)c; for example, H. Margenau and G. M. Murphy, The . . ) .
o | Mathematics of Physics and Chemistry (D. Van Nostrand Com- T16. 1. Plots of A,/Z:A: vs n. The dimensionless time (aM!)
?gl | pany, Inc., Princeton, New Jersey, 1956), 2nd ed., Sec. 13.17. elapsed since initial excitation is indicated by each plot.
R
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obtains the following differential equation for (¢*):

(d{e)/dl) +2(6+as) (€)=2v%a(s+1) exp(—2d()
+[4Bya(s+1) +2as+vaM (2sp+1+p) ] exp(—dl)

+[26%(s+1) +BaM (25p+1+p) +2Bas+saph ], (8)

where
6= (1—p)aM,

B=sp/(1—p),
y=ea—sp/(1-p),
p=e".
Solution of (8) yiclds, after simplification, the
following cxpression for (€*):

(@)= expL=2(b+as) 1 ()= (@I — (0)

+ exp[=200]({a)= (e )

+ expl=({a) = (ea)) (2ea b1 )

et @) ©

(e0)=(e)(0),
()= (e)(),
(e’)=()(0).

The argument of the first exponential depends on the
efficiency of energy transfer among the molecules of
interest.

Boudart and Dubois proposed® that the noncquilib-
rium distributions arising in photochemical reactions,
cte., be characterized by their vibrational temperature,
which is, aside from a scale factor, our (e). Surcly it
would be helpful if one could simply express the in-
formation about such distributions which is most
pertinent to their chemical behavior. Boudart and
Dubois’ Ty, or our (e), is certainly one of the basic
parameters needed. However, one can construct reason-
able model distributions of [s] oscillators having the
same (e) and drastically different rates of decomposi-
tion. (We assumed a Kassel-type formula for the
microscopic decomposition rates of activated mole-
cules.) Evidently, a more detailed description is
needed than is supplied by the single parameter pro-
posed. A logical second parameter to include in a simple
description is the mean-square energy, or some quan-
tity readily derived from it. (¢?) can often be fairly
easily obtained on analysis of theoretical models,!®?
and one should be able to obtain this quantity even
"% M. Boudart and J. T. Dubois, J. Chem. Phys, 23, 223 (1955).

® P, M. Mathews, I. I. Shapiro, and D. L, Ialkoff, Phys. Rev.
120, 1 (1960).

FLUORESCENCE SPECTRA. IV

Initlal excitation to 4th level,
oal0,0"9208,03

.02

116, 2. Plots of A,/ZiA; vs n. Tigures 1, 2, and 3 show the cficcts
of increasing molecular complexity

for the rather general model considered by Gans.'® We
arc indebted to Dr. Dubois for discussing with one of
us the problem of simply characterizing nonequilibrium
distributions, and to our referce for some uscful sug-
gestions on this point.

I'or our model, the mecan-square deviation of the
(dimensionless) energy is given by

(¢8)—{e)*= exp(—281) {[(&®)— (€0 )*— ({e)*/s)
— (e0)] exp(—2ast) +(1/5) ({e0) = {€x))?}
+((e0)— (e )) [(1+e) /(1 —c") J exp(—3t)
+[(ex)/(1=p)]. (10)

If one excites to an initial Boltzmann distribution, the
coefficient of exp(—2ast) vanishes, as one would expect.
If one excites to an initial delta-function distribution
(eo?)= (€0 )?, then the absolute value of the ratio of
the cocflicient of exp(—2ast) to the constant term in
the square brackets is greater than 1+4s/(e). Since
these coefficients are of the order of (e)* and the other
terms in (10) are of the order of (&), one would use
a large value of (e) in order to obtain an estimate
of a. For the initial distribution function Pp,=
3 (8mo+0mn), this ratio is [1—(1/s) —(2/(&)) J+s.

From the above two examples, we can see that there
exist initial distributions for which the behavior of the
mean-square deviation of the energy may be rather
strongly influenced by the vibration-vibration transfer
mechanism.

10 P, J. Gans, J. Chem. Phys, 33, 691 (1960).
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Initial excitation to 4th level,
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I'16. 3. Plots of A,/Z:iA: vs n.

One can conceive of various experiments by which
the presence of such a mechanism could be detected.
One of them is obviously flash excitation and high-
speed spectroscopy, as used, for example, by Norrish.
Another is flash photolysis of the following type. Let
us assume that a reactant has a (dimensionless)

Initlal axcltation to
8th level, ole0ll,
@026,1%10"% 51

1.00 002

.20

D.

F1G. 4. The value of e~ used here and in Fig. 5 corresponds to
that for oxygen at room temperature. As {— only the zeroth
level is populated. Note the change in vertical scale between

Figs. 1, 2, and 3 and Figs. 4, 5, and 6.
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Initial excitation to Bth level,
o= 10, e*Os6.1x10"9,

0025 sul

I6. 5. The curve for which aMt=0.025 shows “piling up”
at its right-hand end. This is also scen in some of the curves in

I'ig. 6.

critical energy €*. If we flash excite a trace of reactant
to energy levels a short distance below ¥, energy ex-
change with the heat bath (assumcd at room tempera-
ture) only will occur, and, as shown previously, this
will result in only a negligible number of molecules
being collisionally excited to energies > €*, so that the
primary quantum yicld would be low. In this case,

Initial exeitation to 10th level,
ols 1,0, 9506, 3¢ |

20—
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!
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00
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5 10 16

I'1e. 6. Plots computed for a model identical to that shown in

Fig. 5, except that the heat-bath temperature is much higher.
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when (e)(£) is large, (&)— (e)?* is small. 11, on the other
hand, we flash excite a rather high concentration of
reactant molecules to energy levels a short distance
below € an cflicient vibration-vibration transfer
mechanism would permit rapid “spreading” of the dis-
tribution before heat-bath interactions had cooled il
down. In this case, the vibration-vibration transfer
mechanism permits the distribution to simultancously
have large values of {e)(£) and {¢&)— (¢)*. Since we
may now have many molecules having vibrational
energy >e*, we would expect, for this case, to find
quite appreciable primary quantum yiclds. urther, it
is readily seen that these quantum yiclds will increase
with increasing flash intensity, in contrast to the pre-
vious casc.

The behavior with time of the quantity ({e*)—
(e)?)/{e)* is of some interest. F'rom Lqs. (6) and (10)
we could write a rather complicated expression for this
quantity; instead we choose to write down the limiting
expression for 6>1

kf; l( (€)= (e))/ ()

= (1/5¢) [1=[({eo) = (e )) / () J(1 =€) exp(—01) }.
(11)

It is interesting to note that the side from which
cquilibrium is finally approached is independent of
everylhing except (e)— (€m)-

RESULTS

Some of our numerical results arc. illustrated in
Tigs. 1-6, in which distribution functions are plotted
as functions of vibrational quantum number at various
times after initial impulsive excitation of the molecules
to one vibrational level. It must be noted here that, in
marked contrast to the linear problems treated previ-
ously, one cannot obtain the solution to the problem
with an arbitrary initial distribution by choosing suit-
able linear combinations of solutions to problems
having initial delta-function distributions.

Iligures 1-3 show the effect of increasing molecular
complexity while holding ¢ and «/aM constant, and
initially exciting impulsively in all cases to the level
containing four quanta. For s=1, (e)(/) decreases
with time; for s=3, it changes relatively little; for
s=3, it increases quite markedly with time. Plots of
distribution functions in which (g) is substantially
larger than skT show somewhat less dependence on s
during the initial relaxation, and the rate of the initial
relaxation is considerably more rapid, due to the fact

FLUORESCENCE SPECTRA. IV

that all of the cocflicients in the relaxation equations
increase with increasing quantum number.

Figures 4 and § show the effects ol varying the
clhiciency of the transfer of vibrational encrgy from one
molecule of interest to another. Ixperimentally, this
could be done by simply increasing the concentration
ol “interesting molecules,” since this mode of cnergy
transfer involves quadratic terms in the A/’s, while the
heat-bath interactions lead to only lincar terms in the
Als. In Fig. 4, ais 0.1; in Fig. 5, it is 10 —aside from
this, the two models are identical. It is evident that an
cefficient  vibration-vibration transfer process  pro-
foundly affects the time evolution of the distribution.
This process, il cfficient, causes a rapid decay to a
Boltzmann distribution, which then relaxes to a Boltz-
mann distribution at the temperature of the heat
bath in exactly the same way as does a similar system
in which energy transfer from one molecule of interest
to another does not occur.

Figure 6 is included for comparison with IYig. 5 and
Iig. 1. The heat-bath temperatures of the models
analyzed in 1%igs. § and 6 arc quite different; neverthe-
less, the initial relaxations of the two distributions are
very similar. The values of « dilfer by a factor of 10;
the over-all result of this is to change the time scale of
the initial relaxation, Tigure 6 and Fig. 1 differ only in
the level to which initial excitation occurs; the initial
distribution having the higher energy “spreads out”
substantially more rapidly than does the other one, as
remarked above.

The right-hand ends of the curves shown in Iig. 6
indicate truncation error, duc to the inclusion of only
19 energy levels in the model. One of the curves in
I'ig. 5 shows the same effect. Such error was also indi-
cated by the fact that values of (e)(¢) calculated by
summing the defining series differed appreciably from
values calculated from Eq. (6). Since the collision
mechanism conserved molecules (no leakage of mole-
cules from the 19th state to those above was permitted),
this type of error does not affect the requirement that
molecules be conserved. The error, appreciable though
it is for the model depicted in Fig. 6, does not, we feel,
invalidate the conclusions mentioned above.

The results of our calculations indicate that studies
of vibrational relaxation in which vibrationally excited
molecules of interest constitute an appreciable fraction
of the species present should lead to considerable in-
formation about the nature of vibration-vibration
transfer of energy between molecules, provided that
the initial distributions of vibrational energy are not
Boltzmann-like.
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